Técnicas moleculares y seguridad transfusional en anemia hemolítica autoinmune: hacia una nueva era en medicina transfusional
DOI:
https://doi.org/10.35434/rcmhnaaa.2024.174.2242Palabras clave:
Anemia hemolítica autoinmune, Autoanticuerpos, Genotipado eritrocitario, Seguridad transfusionalResumen
La anemia hemolítica autoinmune (AHAI) es una enfermedad rara que dificulta las pruebas pretransfusionales debido a la presencia de autoanticuerpos que interfieren con las técnicas serológicas convencionales. Esto aumenta el riesgo de aloinmunización y complica la selección de unidades compatibles, especialmente en pacientes multitransfundidos. Este artículo revisa el uso de técnicas moleculares como la genotipificación eritrocitaria para mejorar la seguridad transfusional en pacientes con AHAI. Se revisaron bases de datos como PubMed, Cochrane, Medline, y Scielo para identificar estudios relevantes publicados entre 2013 y 2024. Las técnicas moleculares permiten una tipificación más precisa y rápida, eliminando las interferencias serológicas, pero enfrentan barreras como los altos costos y la infraestructura limitada en países como Perú. Se propone la centralización de laboratorios de inmunohematología molecular como una solución costo efectiva para garantizar el acceso equitativo. Estas herramientas representan un avance significativo hacia una transfusión más segura y eficiente a nivel nacional.
Descargas
Métricas
Citas
Toro-Espinosa LAT, Jaramillo-Arbelaez PEJ. Characterization of autoimmune hemolytic anemia and usefulness of the monospecific direct antiglobulin test for diagnosis. Rev Hematol [Internet]. 2 de septiembre de 2020 [citado 10 de abril de 2023];24(2):55–64. Disponible en: http://revistahematologia.com.ar/index.php/Revista/article/view/246
Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A, et al. Guidelines on the management of drug‐induced immune and secondary autoimmune, haemolytic anaemia. Br J Haematol [Internet]. 2017;177(2):208–20. doi: 10.1111/bjh.14654
Chaudhary RK, Das SS. Autoimmune hemolytic anemia: From lab to bedside. Asian J Transfus Sci [Internet]. 2014;8(1):5–12. doi: 10.4103/0973-6247.126681
Zhu Z, Ye L, Li Q, Gao H, Tan Y, Cai W. Red Cell Immunohematology Research Conducted in China. Transfus Med Rev [Internet]. 2017;31(2):102–6. doi: 10.1016/j.tmrv.2016.11.004
Castilho L. La trayectoria de la inmunohematología eritrocitaria y su actualidad. Rev Mex Med Transfusional [Internet]. 2022;14(S1):s11-12. doi: 10.35366/107011
Wolf J, Blais-Normandin I, Bathla A, Keshavarz H, Chou ST, Al-Riyami AZ, et al. Red cell specifications for blood group matching in patients with haemoglobinopathies: An updated systematic review and clinical practice guideline from the International Collaboration for Transfusion Medicine Guidelines. Br J Haematol [Internet]. 2024;00:1–15. doi: 10.1111/bjh.19837
El Kenz H, Efira A, Le PQ, Thiry C, Valsamis J, Azerad MA, et al. Transfusion support of autoimmune hemolytic anemia: how could the blood group genotyping help? Transl Res [Internet]. 2014;163(1):36–42. doi: 10.1016/j.trsl.2013.09.007
Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood [Internet]. 2019;133(17):1821–30. doi: 10.1182/blood-2018-08-833962
Fasano RM, Chou ST. Red Blood Cell Antigen Genotyping for Sickle Cell Disease, Thalassemia, and Other Transfusion Complications. Transfus Med Rev [Internet]. 2016;30(4):197–201. doi: 10.1016/j.tmrv.2016.05.011
Tournamille C. Les technologies de biologie moléculaire en immunohématologie. Transfus Clin Biol [Internet]. 2013;20(2):72–9. doi: 10.1016/j.tracli.2013.02.012
Gorakshakar A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood group systems. Indian J Med Res [Internet]. 2017;146(3):305–15. doi 10.4103/ijmr.IJMR_914_16
Lopes MGM, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, et al. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemotherapy Off Organ Dtsch Ges Transfusionsmedizin Immunhamatologie. 2023;50(3):163–73. doi: 10.1159/000530458
Raos M, Lukic M, Pulanic D, Vodanovic M, Cepulic BG. The role of serological and molecular testing in the diagnostics and transfusion treatment of autoimmune haemolytic anaemia. Blood Transfus Trasfus Sangue [Internet]. 2022;20(4):319–28. doi: 10.2450/2021.0235-21
Chen C, Wang L, Han B, Qin L, Ying B. Autoimmune hemolytic anemia in hospitalized patients: 450 patients and their red blood cell transfusions. Medicine (Baltimore) [Internet]. 2020;99(2):e18739. doi: 10.1097/MD.0000000000018739
Ministerio de Salud del Perù. Listado de Enfermedades Raras y Huérfanas [Internet]. 58–589, Resolución Ministerial N° 1075-2019/MINSA. Disponible en: https://cdn.www.gob.pe/uploads/document/file/426220/resolucion-ministerial-n-1075-2019-minsa.PDF
Mautino Allauca J. Enfermedades asociadas a la Anemia Hemolítica Autoinmune y su prevalencia en pacientes atendidos en el Hospital Nacional Dos de Mayo Enero-Noviembre 2017 Lima-Perú. Univ Nac Mayor San Marcos [Internet]. 2018 [citado 10 de abril de 2023]; Disponible en: https://renati.sunedu.gob.pe/handle/sunedu/2877725
Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia: an update. Expert Rev Hematol [Internet]. 2011;4(6):607–18.: doi: 10.1586/ehm.11.60
Cortés A, Muñiz E, León de González G. Inmunohematologia básica y aplicada [Internet]. Primera edición. Grupo Cooperativo Iberoamericano de Medicina Transfusional. Impresora Feriva S.A: Santiago de Cali, Colombia; 2014 [citado 8 de junio de 2022]. 512 p. Disponible en: https://gciamt.org/wp-content/uploads/2020/03/inmunohematologia-basica-y-aplicada.pdf
Liebman HA, Weitz IC. Autoimmune Hemolytic Anemia. Med Clin North Am [Internet]. 2017;101(2):351–9. doi: 10.1016/j.mcna.2016.09.007
Gabbard AP, Booth GS. Cold Agglutinin Disease: Clin Hematol Int [Internet]. 2020;2(3):95: doi: 10.2991/chi.k.200706.001
Shanbhag S, Spivak J. Paroxysmal Cold Hemoglobinuria. Hematol Oncol Clin North Am [Internet]. 2015;29(3):473–8. doi: 10.1016/j.hoc.2015.01.004
Wasnik M, Lahare S, Jagzape T, Chandrakar R. Blood group discrepancy in mixed-type autoimmune hemolytic anemia in a pediatric patient. Asian J Transfus Sci [Internet]. 2021;15(2):247. doi: 10.4103/ajts.AJTS_74_19
Boccoz SA, Fouret J, Roche M, Lachuer J, Legras-Lachuer C, Corgier BP, et al. Massively parallel and multiplex blood group genotyping using next-generation-sequencing. Clin Biochem [Internet]. 2018; 60:71–6. doi: 10.1016/j.clinbiochem.2018.07.010
Montemayor C, Brunker PAR, Keller MA. Banking with precision: transfusion medicine as a potential universal application in clinical genomics. Curr Opin Hematol [Internet]. 2019;26(6):480–7. doi: 10.1097/MOH.0000000000000536
Quirino MG, Colli CM, Macedo LC, Sell AM, Visentainer JEL. Methods for blood group antigens detection: cost-effectiveness analysis of phenotyping and genotyping. Hematol Transfus Cell Ther [Internet]. 2019;41(1):44–9. doi: 10.1016/j.htct.2018.06.006
Carter JH, Flegel WA. Red Cell Transfusions in the Genomics Era. Semin Hematol [Internet]. 2019;56(4):236–40. doi: 10.1053/j.seminhematol.2019.11.001
Wu PC, Pai SC, Chen PL. Blood group genotyping goes next generation: featuring ABO, RH and MNS. ISBT Sci Ser [Internet]. 2018;13(3):290–7. doi: 10.1111/voxs.12426
Zuo Q, Duan Y, Wang B, Xu H, Wu W, Zhao J, et al. Genomic analysis of blood samples with serologic ABO discrepancy identifies 12 novel alleles in a Chinese Han population. Transfus Med [Internet]. 2020;30(4):308–16. doi: 10.1111/tme.12686
Menegati SFP, Santos TD, Macedo MD, Castilho L. Discrepancies between red cell phenotyping and genotyping in daily immunohematology laboratory practice. Transfus Apher Sci [Internet]. 2020;59(1):102585. doi: 10.1016/j.transci.2019.06.020
Kacker S, Ness PM, Savage WJ, Frick KD, Shirey RS, King KE, et al. Cost-effectiveness of prospective red blood cell antigen matching to prevent alloimmunization among sickle cell patients: Cost-effectiveness of Phenotype Matching. Transfusion (Paris) [Internet]. 2014;54(1):86–97. doi: 10.1111/trf.12250
Mazonson P, Efrusy M, Santas C, Ziman A, Burner J, Roseff S, et al. The HI-STAR study: resource utilization and costs associated with serologic testing for antibody-positive patients at four United States medical centers: Cost of Serologic Testing for antibody-positive Patients. Transfusion (Paris) [Internet]. 2014 ;54(2):271-7. doi: 10.1111/trf.12176
Pirenne F, Floch A, Habibi A. How to avoid the problem of erythrocyte alloimmunization in sickle cell disease. Hematology [Internet]. 2021;2021(1):689–95. doi: 10.1182/hematology.2021000306
Ministerio de Salud del Perú. Sistema de gestión de la calidad del PRONAHEBAS: Criterios de Calidad. [Internet]. NT Na 012-2004/MINSA/DGSP-V.01. Disponible en: https://cdn.www.gob.pe/uploads/document/file/417881/341553602050563399920191106-32001-u1g5j2.pdf
Bonet Bub C, Castilho L. ID CORE XT as a tool for molecular red blood cell typing. Expert Rev Mol Diagn [Internet]. 2019;19(9):777–83. doi: 10.1080/14737159.2019.1656529
Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. Lancet Haematol [Internet]. 2015;2(7):e282–8. doi: 10.1016/S2352-3026(15)00090-3
Guo Y, Busch MP, Seielstad M, Endres-Dighe S, Westhoff CM, Keating B, et al. Development and evaluation of a transfusion medicine genome wide genotyping array. Transfusion (Paris) [Internet]. 2019;59(1):101–11. doi: 10.1111/trf.15012
Evers D, Middelburg RA, de Haas M, Zalpuri S, de Vooght KMK, van de Kerkhof D, et al. Red-blood-cell alloimmunisation in relation to antigens’ exposure and their immunogenicity: a cohort study. Lancet Haematol [Internet]. 2016;3(6):e284–92. doi: 10.1016/S2352-3026(16)30019-9
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Lizette Fernandez Bolivar

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.