Actividad bactericida de la solución acuosa de plata sobre enterobacterales productores de betalactamasas de espectro extendido
DOI:
https://doi.org/10.35434/rcmhnaaa.2023.164.1953Palabras clave:
Plata, Resistencia betalactámica, Escherichia coli, Klebsiella pneumoniaeResumen
Introducción: La plata es utilizada desde tiempos remotos por su significativo potencial antibacteriano que puede ser una alternativa eficaz para combatir bacterias fármaco resistentes . Objetivo: El objetivo fue evaluar la actividad bactericida de la solución acuosa de plata sobre cepas de Escherichia coli y Klebsiella pneumoniae productoras de betalactamasas de espectro extendido (BLEE). Material y Métodos: Estudio experimental con estímulo creciente, donde se evaluaron 225 unidades de análisis constituidas por 14 cultivos de E. coli BLEE, 01 cultivo de K. pneumoniae BLEE, 5 concentraciones de solución acuosa, con tres aplicaciones por experimento. Para la obtención de la solución acuosa de plata se utilizó el método electroquímico y su actividad bactericida se determinó con la concentración mínima bactericida. Además, se estableció la curva de crecimiento de las cepas bacterianas, al contabilizar el número de colonias de bacterias posterior a la exposición con la solución acuosa de plata (0, 2, 4, 6, 8 y 24 horas de exposición). Resultados: La CMI y CMB fue de 2,5 y 5mg/L para E. coli y K. pneumoniae BLEE, respectivamente. Las concentraciones de 5mg/L y 10mg/L de la solución acuosa de plata ejercieron actividad bactericida frente a las cepas evaluadas, evidenciándose ausencia de crecimiento bacteriano in vitro pasadas las 4 y 8 horas de exposición, respectivamente. Conclusión: La solución acuosa de plata presentó actividad bactericida frente a las cepas Escherichia coli y Klebsiella pneumoniae BLEE, observándose que, dicha actividad incrementó a mayor concentración y tiempo de exposición.
Descargas
Métricas
Citas
Sanches M, Oliveira A. Panorama de acciones para combatir la resistencia bacteriana en hospitales de gran porte. Rev. Latino-Am. Enfermagem [Internet] 2021 [citado el 6 de marzo de 2023]; 29: e3407. Disponible en: https://www.scielo.br/j/rlae/a/Bpcp3FZT9yDLMLMrcxpkwbC/?lang=en
Zou L, Wang J, Gao Y, Ren X, Rottenberg ME, Lu J, et al. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci Rep. 2018;8(1):11131. doi: 10.1038/s41598-018-29313-w.
García Y, Filott M, Campo M, Gómez L, Bettín A. Perfiles de los fenotipos de resistencia en Escherichia coli y Klebsiella pneumoniae en Barranquilla, Colombia. Revista Ciencias Biomédicas. 2020; 9(1): 15–24. doi: 10.32997/rcb-2020-3039
Díaz Sh, Castañeda K, Santa Cruz - López C, Carrasco F, Moreno M. Etiología de infecciones urinarias y prevalencia de Escherichia coli productora de betalactamasas de espectro extendido y carbapenemasas. REBIOL. [Internet]. 2021 [citado el 6 de marzo de 2023]; 41 (2): 179-86. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8181183
Urquizo G, Arce J, Alanoca G. Resistencia bacteriana por betalactamasas de espectro extendido: un problema creciente. Rev. Méd. La Paz [Internet]. 2018[citado el 6 de marzo de 2023]; 24(2): 77-83. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S172689582018000200012&lng=es.
Cabrera LE, Díaz L, Díaz S, Carrasco A, Ortiz G. Multirresistencia de Escherichia coli y Klebsiella pneumoniae provenientes de pacientes con infección del tracto urinario adquirida en la comunidad. Rev Cubana Med Gen Integr [Internet]. 2019 [citado 06 de marzo de 2023]; 35(1): e814. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S086421252019000100006&lng=es.
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171-8. doi: 10.1128/AEM.02001-07.
Cabrales A, Cobo B, Benítez YD, Osorio MF, Martínez JWi, Castrillón ML. Efectividad de los apósitos de plata en la prevención de la infección del sitio operatorio en heridas contaminadas. Iatreia [Internet]. 2014 [citado 8 de marzo de 2023]; 27(3): 247-254. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012107932014000300001&lng=en.
Sim W, Barnard RT, Blaskovich MAT, Ziora ZM. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007⁻2017). Antibiotics (Basel). 2018; 7(4):93. doi: 10.3390/antibiotics7040093.
Vila A, Ayerbe R, Miró A, Rodríguez Á, Smani Y. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics. 2020;9(1):36. doi: 10.3390/antibiotics9010036
Blandón L, Vázquez MV, Boannini E, Ballarin B. Síntesis electroquímica de nanopartículas de plata en presencia de un surfactante neutro. Afinidad J Chem Eng Theor Appl Chem [Internet]. 2015 [citado el 9 de marzo de 2023];72(569). Disponible en: https://raco.cat/index.php/afinidad/article/view/291709
Damir B Pero D, Anita R, Hrvoje J. Synthesis and antibacterial activity of colloidal silver prepared by electrochemical method, Arab Journal of Basic and Applied Sciences, 2020; 29(1): 214-220. doi:10.1080/25765299.2022.2093034
Balda M a BP, Gómez MEG, Moreno EIG. Actividad bactericida del agua de plata coloidal sobre indicadores de calidad microbiológica: un estudio a partir de muestras ambientales. Rev Ecuat Med Cienc Biológicas. 2020; 41(1): 75-84. doi: 10.26807/remcb.v41i1.840
Canut A, Collazos A, Díez M, Morosini MI, Rodríguez-Gascón A, Seral C. Métodos microbiológicos para la determinación in vitro de la actividad de combinaciones de antimicrobianos. Madrid: Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC); 2020[citado el 12 de marzo de 2023]. Disponible en: https://seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimiento70.pdf
Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021; 22(13):7202. doi: 10.3390/ijms22137202.
Tran PL, Huynh E, Hamood AN, de Souza A, Mehta D, Moeller KW, et al. The ability of a colloidal silver gel wound dressing to kill bacteria in vitro and in vivo. J Wound Care. 2017; 26(sup4):16-24. doi: 10.3390/ijms22137202
Barras F, Aussel L, Ezraty B. Silver and Antibiotic, New Facts to an Old Story. Antibiotics (Basel). 2018;7(3):79. doi: 10.3390/antibiotics7030079.
Naik K, Kowshik M. The silver lining: towards the responsible and limited usage of silver. J Appl Microbiol. 2017;123(5):1068-1087. doi: 10.1111/jam.13525.
Hwang IS, Cho JY, Hwang JH, Hwang BM, Choi HM, Lee JY, et al. Antimicrobial Effects and Mechanism(s) of Silver Nanoparticle. Microbiol Biotechnol Lett. [Internet]. 2011 [citado el 15 de marzo de 2023];39(1):1-8. Disponible en: http://www.koreascience.or.kr/article/JAKO201106737198658.page
Ahmad SA, Das SS, Khatoon A, Ansari MT, Afzal M, Hasnain S, et al. Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies. 2020; 3: 756-769. doi: 10.1016/J.MSET.2020.09.002
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017; 12:1227-1249. doi: 10.2147/IJN.S121956.
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016; 7:1831. doi: 10.33 Flores
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000; 52(4):662-8. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3.
More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms. 2023;11(2):369. doi: 10.3390/microorganisms11020369.
Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int J Mol Sci. 2018;19(2):444. doi: 10.3390/ijms19020444.
Gonzalez M. Efecto bactericida de nanopartículas de plata y desinfectantes sobre bacterias multirresistentes. [tesis]. México: Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de México; 2017 [citado el 20 de marzo de 2023]. Disponible en: http://ri.uaemex.mx/handle/20.500.11799/6795489/fmicb.2016.01831.
Díaz EM. Nanopartículas de plata: síntesis y funcionalización. Una breve revisión. Mundo nano. 2019;12(22). doi:10.22201/ceiich.24485691e.2019.22.60758.
Dove AS, Dzurny DI, Dees WR, Qin N, Núñez CC, Alt LA, et al. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front Microbiol. 2023; 13:1064095. doi: 10.3389/fmicb.2022.1064095.
Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006; 33:17-34. doi: 10.1159/000093928.
McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol. 2021; 12:652863. doi: 10.3389/fmicb.2021.652863.
Hosny AEM, Rasmy SA, Aboul-Magd DS, Kashef MT, El-Bazza ZE. The increasing threat of silver-resistance in clinical isolates from wounds and burns. Infect Drug Resist. 2019; 12:1985-2001. doi: 10.2147/IDR.S209881.
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Fiorella López-Esquen, Cinthya Yanina Santa Cruz-López, Fransk Carrasco-Solano, Martha Vergara-Espinoza, Miguel Ruiz-Barrueto
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.