Effect of the CYP4F2 gene on warfarin dose in anticoagulated peruvian patients, 2019-2022
DOI:
https://doi.org/10.35434/rcmhnaaa.2024.172.2153Keywords:
Warfarin, Pharmacogenetics, CYP4F2, Anticoagulation, International normalized ratioAbstract
Introduction: Warfarin is an anticoagulant whose efficacy depends on reaching and maintaining an INR (International Normalized Ratio) within therapeutic ranges. Up to 60% of interindividual dose-response variability can be explained by pharmacogenes, in this regard there are no studies in Peru. We studied the effect of the CYP4F2 gene on the dose of warfarin in Peruvian patients.
Material and Methods: A descriptive and ambispective observational study was carried out with patients seen in the Grau ESSALUD Hospital Hematology Service, Lima, Peru, selected by non-probabilistic convenience sampling. The inclusion criteria were patients anticoagulated for more than three months and with stable doses of warfarin (same dose for at least three outpatient visits and with an INR in therapeutic ranges of 2.5-3.5). Analysis of the CYP4F2 gene was performed by taking a DNA sample from peripheral blood.
Results: 70 patients with a mean age of 69.6 + 13.4, male 38 (54.39%) and female 32 (45.7%) entered the study. The mean dose of warfarin was 31.6 + 15.2 mg/week. The genotypic frequency of the CYP4F2 gene, rs2108622 variant (CT) was 55 (78%), 13 (19%) and 2 (3%) of CC, CT, TT, respectively. No deviation from the Hardy-Weinberg equilibrium was found in the variants studied (p=0.56). Mean warfarin doses/week of the CC, CT, TT genotypes were 30.34 + 11.98; 36.4 + 25.6 and 36.25 + 1.8 mg/week, respectively (p=0.397).
Conclusion: In conclusion, it appears that CYP4F2 gene genotypes do not have a significant effect on warfarin dose.
Downloads
Metrics
References
He Y, Wong ICK, Li X, et al. The association between non-vitamin K antagonist oral anticoagulants and gastrointestinal bleeding: a meta-analysis of observational studies. Br J Clin Pharmacol. 2016;82(1):285-300. doi:10.1111/bcp.12911
Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ETTL. New Oral Anticoagulants Increase Risk for Gastrointestinal Bleeding: A Systematic Review and Meta-analysis. Gastroenterology. 2013;145(1):105-112.e15. doi:10.1053/j.gastro.2013.02.041
Raschi E, Bianchin M, Ageno W, De Ponti R, De Ponti F. Risk–Benefit Profile of Direct-Acting Oral Anticoagulants in Established Therapeutic Indications: An Overview of Systematic Reviews and Observational Studies. Drug Saf. 2016;39(12):1175-1187. doi:10.1007/s40264-016-0464-3
Pirmohamed M. Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol. 2006;62(5):509-511. doi:10.1111/j.1365-2125.2006.02806.x
Oscanoa TJ, Lizaraso F, Carvajal A. Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis. Eur J Clin Pharmacol. 2017;73(6):759-770. doi:10.1007/s00228-017-2225-3
Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on Patient Response to Warfarin: A Systematic Review and Meta-Analysis. Novelli G, ed. PLoS One. 2012;7(8):e44064. doi:10.1371/journal.pone.0044064
van Gorp R, Schurgers L. New Insights into the Pros and Cons of the Clinical Use of Vitamin K Antagonists (VKAs) Versus Direct Oral Anticoagulants (DOACs). Nutrients. 2015;7(11):9538-9557. doi:10.3390/nu7115479
Sun X, Yu WY, Ma WL, Huang LH, Yang GP. Impact of the CYP4F2 gene polymorphisms on the warfarin maintenance dose: A systematic review and meta-analysis. Biomed Reports. 2016;4(4):498-506. doi:10.3892/br.2016.599
Tavares LC, Marcatto LR, Soares RAG, Krieger JE, Pereira AC, Santos PCJL. Association Between ABCB1 Polymorphism and Stable Warfarin Dose Requirements in Brazilian Patients. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00542
Perini J, Struchiner C, Silva-Assunção E, et al. Pharmacogenetics of Warfarin: Development of a Dosing Algorithm for Brazilian Patients. Clin Pharmacol Ther. 2008;84(6):722-728. doi:10.1038/clpt.2008.166
Botton MR, Bandinelli E, Rohde LEP, Amon LC, Hutz MH. Influence of genetic, biological and pharmacological factors on warfarin dose in a Southern Brazilian population of European ancestry. Br J Clin Pharmacol. 2011;72(3):442-450. doi:10.1111/j.1365-2125.2011.03942.x
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. doi:10.1093/nar/16.3.1215
Cen HJ, Zeng WT, Leng XY, et al. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol. 2010;70(2):234-240. doi:10.1111/j.1365-2125.2010.03698.x
Li J, Yang W, Xie Z, Yu K, Chen Y, Cui K. Impact of VKORC1, CYP4F2 and NQO1 gene variants on warfarin dose requirement in Han Chinese patients with catheter ablation for atrial fibrillation. BMC Cardiovasc Disord. 2018;18(1):96. doi:10.1186/s12872-018-0837-x
Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47(11):1245-1251. doi:10.1016/0895-4356(94)90129-5
Zhao Z, Zhao F, Wang X, et al. Genetic Factors Influencing Warfarin Dose in Han Chinese Population: A Systematic Review and Meta-Analysis of Cohort Studies. Clin Pharmacokinet. 2023;62(6):819-833. doi:10.1007/s40262-023-01258-y
Singh O, Sandanaraj E, Subramanian K, Lee LH, Chowbay B. Influence of CYP4F2 rs2108622 (V433M) on Warfarin Dose Requirement in Asian Patients. Drug Metab Pharmacokinet. 2011;26(2):130-136. doi:10.2133/dmpk.DMPK-10-RG-080
Klomp SD, Manson ML, Guchelaar H-J, Swen JJ. Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review. J Clin Med. 2020;9(9):2890. doi:10.3390/jcm9092890
Shah RR, Smith RL. Addressing phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharmacol. 2015;79(2):222-240. doi:10.1111/bcp.12441
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Teodoro J. Oscanoa, María L. Guevara-Fujita, María Y. Muñoz-Paredes, Oscar Acosta, Ricardo M. Fujita
This work is licensed under a Creative Commons Attribution 4.0 International License.