Bactericidal activity of textile with copper thread against antibiotic-resistant and carbapenemase-producing bacteria that cause nosocomial infections.

Authors

  • Julitza Yanet Domínguez Salvador Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.
  • Katherine Yolanda Lozano Peralta Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.
  • Pedro Mercado Martínez Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.
  • Keyla Torres Chiclayo Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.
  • Mario Rodrigo Esparza Mantilla Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

DOI:

https://doi.org/10.35434/rcmhnaaa.2024.172.2201

Keywords:

Copper, Pathogens, Antimicrobial, Antibacterial, Carbapenemase

Abstract

Introduction: Hospital-acquired infections  (HAI) due to antibiotic-resistant bacteria are a public health problem, and the hospital environment is a favorable reservoir for various pathogens, therefore a health option for pathogen control is to evaluate the bactericidal activity of textile platforms with yarn copper against pathogens that cause carbapenemase-resistant HAI. Materials and methods: the bactericidal capacity of the biomedical textile with and without copper thread was evaluated in four bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Klebsiella peumoniae and Staphylococcus aureus. Differences in survival time and bacterial density were established using ANOVA and Tukey tests with a significance level of P <0.05 in triplicate. Results: The survival of E. coli, K. pneumoniae, P. aeruginosa and S. aureus, on biomedical textiles with copper thread, was 80, 90, 120 and 140 min, respectively. But in textile without copper thread the bacterial density (1x105 CFU/ml) remained viable for more than 180 min for all bacterial strains. Copper thread textile is more effective in eliminating Gram-negative bacteria (K. pneumoniae, P. aeruginosa, E. coli), versus Gram-positive bacteria (S. aureus). Conclusion: the textile with copper thread has an antibacterial effect against K. pneumoniae, P. aeruginosa, S. aureus and E. coli; Unlike textiles without copper, where bacteria remained viable, copper thread has potential as an antimicrobial against carbapenemase-resistant pathogens to be applied in biomedical textile platforms or dressings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Julitza Yanet Domínguez Salvador, Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

  1. Estudiante de Medicina

Katherine Yolanda Lozano Peralta, Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

1. Médico

Pedro Mercado Martínez, Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

  1. Doctor en Ciencias Biomédicas

Keyla Torres Chiclayo, Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

1. Biólogo - Microbiólogo

Mario Rodrigo Esparza Mantilla, Universidad Privada Antenor Orrego. Facultad de Medicina Humana. Laboratorio de Genética, Reproducción y Biología Molecular. GENERBIM. Trujillo. Perú.

1. Biólogo - Microbiólogo

2. Doctor en Microbiología

References

Peleg A, HooperM.D. Infecciones intrahospitalarias por bacterias gram-negativas, N Engl J Med 2010, DOI: 10.1056/NEJMra0904124 Disponible en: https://www.intramed.net/65629/Infecciones-intrahospitalarias-por-bacterias-gram-negativas

Cabrera CE, Gómez RF, Zúñiga AE. La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colombia Médica [Internet]. 2007 [citado el 25 de junio de 2023];38(2):149-58. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-95342007000200008

Butlera DL, Majorb Y, Bearmana G, Edmond MB. Transmission of nosocomial pathogens by white coats: an in-vitro mode. Journal of Hospital Infection. 2010; 75 (2010) 136–147. DOI: 10.1016/j.jhin.2009.11.024

Karlström AR, Levine RL. Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc Natl Acad Sci USA. 1991;88(13):5552-6. doi.org/10.1073/pnas.88.13.5552

Sagripanti JL, Routson LB, and Lytle D. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Applied and Environmental Microbiology[Internet]. 1993 [citado el 25 de junio de 2023];59(12):4374-4376 https://journals.asm.org/doi/epdf/10.1128/aem.59.12.4374-4376.1993

Miyamoto D, Kusagaya Y, Endo N, Sometani A, Takeo S, Suzuki T, et al. Thujaplicin–copper chelates inhibit replication of human influenza viruses. Antiviral Research.1998;39(2):89-100. doi.org/10.1016/s0166-3542(98)00034-5

Borkow G, Gabbay J. Putting copper into action: copper-impregnated products with potent biocidal activities. The FASEB Journal. 2004;18(14):1728-30. https://doi.org/10.1096/fj.04-2029fje

Lin Y, Yan X, Cao W, Wang C, Feng J, Duan J, et al. Probing the structure of the SARS coronavirus using scanning electron microscopy. Antivir Ther. [Internet] 2004 [citado el 30 de junio del 2023];9(2):287-9. https://pubmed.ncbi.nlm.nih.gov/15134191/

Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y. Copper oxide impregnated textiles with potent biocidal activities. Journal of Industrial Textiles. 2006;35(4):323-35. doi.org/10.1177/1528083706060785

Borkow G, Zhou SS, Page T, Gabbay J. A Novel Anti-Influenza copper oxide containing respiratory face mask. PLOS ONE. 2010;5(6):11295. doi.org/10.1371/journal.pone.0011295

Borkow G, Gabbay J. Copper, An ancient remedy returning to fight microbial, fungal and viral infections. Current Chemical Biology.2009;3(3):272-278. Doi: 10.2174/2212796810903030272

Neciosup E, Vergara M, Pairazamán O, Apablaza M, Esparza M. Cobre antimicrobiano contra patógenos intrahospitalarios en Perú. An Fac med. 2015;76(1):9-14. https://doi.org/10.15381/anales.v76i1.11069

Warnes SL, Summersgill EN, Keevil CW. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Applied and Environmental Microbiology.2015;81(3):1085-1091. doi.org/10.1128/AEM.03280-14

Prado J V, Vidal A R, Durán T C. Aplicación de la capacidad bactericida del cobre en la práctica médica. Revista médica de Chile.2012;140(10):1325-32. https://doi.org/10.4067/S0034-98872012001000014

Sunada K, Minoshima M, Hashimoto K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. Journal of Hazardous Materials. 2012;235-236:265-70. https://doi.org/10.1016/j.jhazmat.2012.07.052

Albarqouni L, Byambasuren O, Clark J, Scott AM, Looke D, Glasziou P. Does copper treatment of commonly touched surfaces reduce healthcare-acquired infections? A systematic review and meta-analysis. J Hosp Infect. 2020;106(4):765-73. https://doi.org/10.1016/j.jhin.2020.09.005

Warnes SL, Caves V, Keevil CW. Mechanism of copper surface toxicity in escherichia coli O157:H7 and salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environmental Microbiology. 2012;14(7):1730-1743. doi.org/10.1111/j.1462-2920.2011.02677.x

Butler, DL, Major Y, Bearman G, & Edmond, M. B. Transmission of nosocomial pathogens by white coats: an in-vitro model. The Journal of hospital infection. (2010); 75(2), 137–138. https://doi.org/10.1016/j.jhin.2009.11.024

Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T. Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. Journal of Hospital Infection. 2002; 50(2):110_114 DOI: 10.1053/jhin.2001.1127.

Ohl M, Schweizer M, Graham M, Heilmann K, Boyken L, Diekema D. Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. American Journal of Infection Control. 2012; 40(10):904_906 DOI: 10.1016/j.ajic.2011.12.017.

Aillón-García P, Parga-Landa B, Guillén-Grima F. Effectiveness of copper as a preventive tool in health care facilities. A systematic review. Am J Infect Control.2023;S0196-6553(23)1-11. https://doi.org/10.1016/j.ajic.2023.02.010

Ivanauskas R, Bronusiene A, Ivanauskas A, Šarkinas A, Ancutiene I. Antibacterial activity of copper particles embedded in knitted fabrics. Materials. 2022;15(20):7147. doi.org/10.3390/ma15207147

Obaid MA, Hellal KH, Abd AN. Study the effect of antibacterial on the chemically prepared copper oxide. Materials Today: Proceedings. 2021; 47:6006-10. doi.org/10.1016/j.matpr.2021.04.554

Cuevas O, Cercenado E, Vindel A, Guinea J, Sánchez-Conde M, Sánchez-Somolinos M, et al. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrob Agents Chemother. 2004; 48 (11): 4240 - 5. doi.org/10.1128/AAC.48.11.4240-4245.2004

Shi Q, Huang C, Xiao T, Wu Z, Xiao Y. A retrospective analysis of pseudomonas aeruginosa bloodstream infections: prevalence, risk factors, and outcome in carbapenem-susceptible and -non-susceptible infections. Antimicrobial Resistance & Infection Control. 2019;8(1):68. doi.org/10.1186/s13756-019-0520-8

Rödel J, Pfeifer Y, Fischer MA, Edel B, Stoll S, Pfister W, et al. Screening of Klebsiella pneumoniae isolates for carbapenemase and hypervirulence-associated genes by combining the eazyplex superbug CRE and hvKp assays. antibiotics. 2023;12(6):959. doi.org/10.3390/antibiotics12060959

Marković D, Deeks C, Nunney T, Radovanović Ž, Radoičić M, Šaponjić Z, et al. Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydrate Polymers. 2018; 200:173-82. doi.org/10.1016/j.carbpol.2018.08.001

Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases. 2006;6(1):130. doi.org/10.1186/1471-2334-6-130

Bhalla A, Pultz NJ, Gries DM, Ray AJ, Eckstein EC, Aron DC, et al. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol.2004;25:164-167. doi.org/10.1086/502369

Espírito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, et al. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794-802. doi:10.1128/AEM.01599-10

Schneider G, Vieira LG, Carvalho HEF de, Sousa ÁFL de, Watanabe E, Andrade D de, et al. Textiles impregnated with antimicrobial substances in healthcare services: systematic review. Frontiers in Public Health[Internet]. 2023 [citado el 25 de junio de 2023];11(6):1-24 https://www.frontiersin.org/articles/10.3389/fpubh.2023.1130829

Mehtar S, Wiid I, Todorov SD. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. Journal of Hospital Infection. 2008;68(1):45-51. doi.org/10.1016/j.jhin.2007.10.009

Cuevas O, Cercenado E, Vindel A, Guinea J, Sánchez-Conde M, Sánchez-Somolinos M, et al. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrob Agents Chemother. 2004; 48 (11): 4240 - 5. doi.org/10.1128/AAC.48.11.4240-4245.2004

Noyce JO, Michels H, Keevil CW. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. Journal of Hospital Infection. 2006;63(3):289-97. doi.org/10.1016/j.jhin.2005.12.008

Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD.et al. Role of copper in reducing hospital environment contamination. Journal of Hospital Infection. 2010;74 (1): 72. doi.org/10.1016/j.jhin.2009.08.018

Oie S, Hosokawa I, Kamiya A. Contamination of room door handles by methicillin-sensitive/methicillin-resistant Staphylococcus aureus. Journal of Hospital Infection. 2002;51(2):140-3. doi.org/10.1053/jhin.2002.1221

Hota B, Weinstein RA. Contamination, disinfection, and cross-colonization:are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis.2004;39(8):1182-9. doi.org/10.1086/424667

Monier M, Ayad DM, Sarhan AA. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. Journal of Hazardous Materials. 2010;176(1):348-55. doi.org/10.1016/j.jhazmat.2009.11.034

Published

2024-06-25

How to Cite

1.
Domínguez Salvador JY, Lozano Peralta KY, Mercado Martínez P, Torres Chiclayo K, Esparza Mantilla MR. Bactericidal activity of textile with copper thread against antibiotic-resistant and carbapenemase-producing bacteria that cause nosocomial infections. Rev. Cuerpo Med. HNAAA [Internet]. 2024 Jun. 25 [cited 2024 Jul. 3];17(2). Available from: https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2201