Comparison of covid-19 case fatality rates in high altitude areas in Peru
DOI:
https://doi.org/10.35434/rcmhnaaa.2023.161.1890Keywords:
case fatality rate, altitude, COVID - 19, population density,, povertyAbstract
Introduction. COVID-19 infection in high-altitude districts has been a subject of study for several researchers since the incidence and transmission capacity of this virus is lower at higher altitudes. Objective. Compare the lethality of COVID-19 at different altitudes in different districts of Peru. Material and Methods. We conducted a secondary descriptive observational study based on data from the Ministry of Health, we took as a unit of analysis 1874 districts of Peru, taking the fatality rate as the dependent variable. In our main analysis, we developed a crude and cofactor-adjusted linear regression between the COVID-19 case fatality rate per million inhabitants and altitude of residence of the districts of Peru, we also carried out two sensitivity analyzes, to provide different approaches to the problem, adding two multivariate regression models as a sensitivity analysis, all the analyzes were crudely and adjusted estimated, with their respective 95% confidence intervals (95%CI). Results. The average case fatality rate of each district located at less than 1500 m.a.s.l. was 415.49% per hundred million inhabitants, while at more than 3500 m.a.s.l., it decreased by almost half. However, when performing the analysis adjusted for confounders, population density and poverty quintile, it was observed that there was no statistically significant difference (p=0.359). Conclusions. Our findings show that although at higher altitudes above sea level, there is a lower-case fatality rate, this value is not clearly attributed to altitude.
Downloads
Metrics
References
Na Zhu, N., Zhang, D. et. to the. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020: 727-733. DOI: 10.1056/NEJMoa2001017
ArcGIS Dashboards. (2021). Retrieved 16 May 2021, from https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
Covid 19 in Peru - Ministry of Health. (2021). Retrieved 16 May 2021, from https://covid19.minsa.gob.pe/sala_situacional.asp
Cuba, H., 2021. The pandemic in Peru: Actions, Impact and Consequences of Covid-10. Available at: https://repositorioacademico.upc.edu.pe/handle/10757/658036
Arias-Reyes et al. Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude?. Breathe Physiol Neurobiol; 2020. DOI: 10.1016/j.resp.2020.103443
Segovia-Juarez, J., Castagnetto-Mizuaray. et al. High altitude reduces infection rate of COVID-19 but not case-fatality rate. Respir Physiol Neurobiol. 2020; 281: 103494. DOI: 10.1016/j.resp.2020.103494
J. Burtscher, et al. Caution is needed on the effect of altitude on the pathogenesis of SAR-CoV-2 virus. Breathe Physiol Neurobiol. 279. 2020; 1034642. DOI: 10.1016/j.resp.2020.103464
Storz, J. F., & Scott, G. R. Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia. ANNU REV ECOL EVOL S. 2019; 50(1). DOI: 10.1146/annurev-ecolsys-110218-025014
Tinoco-Solórzano A, Nieto Estrada VH, Vélez-Páez JL, Molano Franco D, Viruez Soto A, Villacorta-Córdova F, Avila Hilari A, Cahuaya Choque CA. Medicina intensiva en la altitud. revisión de alcance. Revista de Medicina Intensiva y Cuidados Críticos.2020;13(4):218-25. doi: htpps://10.37463/intens-samay/0024.
Azad, P., Stobdan, T. et al. High-altitude adaptation in humans: from genomics to integrative physiology. J Mol Med. 2017; 95(12): 1269–1282 DOI: 10.1007/s00109-017-1584-7
Zhang, R., Whu, Y. et al. Role of HIF-1 in the regulation of ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009; 297: L631–L640. DOI: 10.1152/ajplung.90415.2008
Hamming I, Timens W, Bulthuis ML. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2):631-7. DOI: 10.1002/path.1570
Burtscher M. Effects of living at higher altitudes on mortality: a narrative review. Aging and disease. 2013; 5(4), 274–280. DOI: 10.14336/AD.2014.0500274
Burtscher M. Lower mortality ratesin those living at moderate altitude. AGING 2016; 8(10): 2603-2604. DOI: 10.18632/aging.101057
Zubieta-Calleja G, Zubieta-DeUrioste N. Pneumolysis and ''Silent Hypoxemia'' in COVID-19. Ind J Clin Biochem. 2021; 36(1):112–116. DOI: 10.1007/s12291-020-00935-0
Cano E. et al. Negative Correlation between Altitude and COVID-19 Pandemic in Colombia: A Preliminary Report. Am J Trop Med Hyg. 2020; 103(6): 2347–2349. DOI: 10.4269/ajtmh.20-1027
Accinelli A., Leon-Abarca J. Lower frequency and letality in women and in altitude due to COVID-19: Two sides of the same coin. Arch Bronconeumol. 2021;57(S2):64–7. DOI: 10.1016/j.arbres.2021.02.010
Intimayta-Escalante, C. Rojas-Bolivar, D. Hancco, I. Letter to the Editor: Influence of Altitude on the Prevalence and Case Fatality Rate of COVID-19 in Peru. High Alt Med Biol. 2020; 21 (4): 426-427. https://doi.org/10.1089/ham.2020.0133
INEI. Peru: Final Results of the 2017 National Censuses [Internet]. Inei.gob.pe. 2021 [cited 23 May 2021]. Available from: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1544/
FAO 2015. AQUASTAT Country Profile - Peru. Food and Agriculture Organization of the United Nations,Rome, Italy.
Pan American Health Organization. Basic guidelines for mortality analysis. Washington, D.C.: PAHO; 2017.
National Center for Epidemiology, Prevention and Control of Diseases - MINSA. COVID-19 Deaths Dataset [Internet] Datasabiertos.gob.pe. 2021 Available from: https://www.datosabiertos.gob.pe/dataset/fallecidos-por-covid-19-ministerio-de-salud-minsa/resource/4b7636f3-5f0c-4404-8526
INEI. Peru: Population Estimates and Projections by Department, Province and District, 2018-2020. [Internet]. Inei. gob.pe. 2020. Available in: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1715/libro.pdf
CEPLAN. Peru: Departmental, provincial anddistrict information on the population requiring additional attention and accrued per capita. [Internet]. Ceplan.gob.pe. 2017. Available in: https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/8CB9BB79495ACE5F052582780056A821/$FILE/Informaci%C3%B3n-departamental-provincial-distrital-al-31-de-diciembre-VF.pdf
Simon R., Simon D., Illness at high altitudes. Nursing research. 2014 (7):36-41; quiz 41-2. DOI: 10.1097/01.NURSE.0000450794.03226.3 PMID: 24867322
Seclén S. N., Nunez-Robles, E., Yovera-Aldana, M., & Arias-Chumpitaz, A. Incidence of COVID-19 infection and prevalence of diabetes, obesity and hypertension according to altitude in Peruvian population. Diabetes Research and Clinical Practice, 2020. 169, 108463. DOI: 10.1016/j.diabres.2020.108463
Thomson T. et al. Potential Protective Effect from COVID-19 Conferred by Altitude: A Longitudinal Analysis in Peru During Full Lockdown. High Alt Med Biol. 2021 Jun;22(2):209-224. DOI: 10.1089/ham.2020.0202
Anne Steinberg LN, Carrillo-Larco RM, Stella H, Lescano AG, CheckleyW. Living at High Altitude and COVID-19 Mortality in Peru. High Alt Med Biol. 2022. Jun;23(2):146-158. https://doi.org/10.1089/ham.2021.0149
Mayta-Tristán P. Los tsunamis por Covid-19 en Perú: El primero malo, el segundo peor. Rev. Cuerpo Med. HNAAA. 2021;14 (3): 260-261. https://doi.org/10.35434/rcmhnaaa.2021.143.1249
Mujica O., Suárez-Ognio L., True positivity, false negativity and diagnostic omission of sars-cov-2 infection in Peru. Rev Peru Med Exp Salud Publica. 2020;37(4):779-80. http://dx.doi.org/10.17843/rpmesp.2020.374.6205
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Milagros Canchucaja-Bendezú, Verna Chavez-Alva, Juan Huaccho-Rojas, Dante M. Quiñones-Laveriano
This work is licensed under a Creative Commons Attribution 4.0 International License.