Real-time RT-PCR internal quality control optimization for qualitative detection of SARS-CoV-2
DOI:
https://doi.org/10.35434/rcmhnaaa.2023.161.1657Keywords:
Optimization, Internal quality control, Real-time RT-PCR, SARS-CoV-2Abstract
Objective: To optimize the internal quality control of real-time RT-PCR for the qualitative detection of SARS-CoV-2, using the Cq values of negative and positive controls. Material and method: Prospective-longitudinal study. The sample consisted of 143 Cq values for the negative aliquot and extraction controls, as well as for the positive control. The normal distribution of Cq values was analyzed using the Anderson-Darling (AD) test and randomness tests were applied. Control limits were calculated from 51 Cq values, and then, using control charts, to monitor 92 Cq values obtained from November 2020 to March 2021. Lot acceptance and Cpk indices were evaluated as optimization indicators. The calculations were made with the Minitab program. Results: The batches of Cq values were accepted and Cpk indices higher than 1.33 were obtained for the three types of control. Discussion: There are no published studies that apply statistical quality control to the qualitative detection of SARS-CoV-2. Conclusions: It is possible to use the Cq values of the controls to optimize the internal quality control of real-time RT-PCR for qualitative detection of SARS-CoV-2, as if it were a quantitative technique.
Downloads
Metrics
References
Pe BO, Rinc B, Jairo J, Le C. SARS-CoV-2 : Generalidades bioquímicas y métodos de diagnóstico. :11–33.
Lizaraso Caparó F, del Carmen Sara JC. Coronavirus y las amenazas a la salud mundial. Horiz Médico. 2020;20(1):4–5.
ThermoFisher. Realtime PCR handbook. Realt PCR Handb [Internet]. 2015;1–68. Available from: https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/PG1503-PJ9169-CO019861-Update-qPCR-Handbook-branding-Americas-FLR.pdf%0Ahttp://www.nature.com/doifinder/10.1038/tp.2014.12%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=405504
Westgard S, Lucic D. Sigma Metrics for Assessing Accuracy of Molecular Testing. Clin Microbiol Newsl. 2015 Jul 1;37(13):103–10.
Wikramaratna PS, Paton RS, Ghafari M, Lourenço J. Estimating the false-negative test probability of SARS- CoV-2 by RT-PCR. Eurosurveillance [Internet]. 2020;25(50):1–10. Available from: http://dx.doi.org/10.2807/1560-7917.ES.2020.25.50.2000568
Rao S, Manissero D, Steele V, Pareja J. Clinical utility of cycle threshold values in the context of COVID-19. 2020;1–23.
García AF, Melón S, Navarro D. Organización del diagnóstico de SARS-CoV-2 y estrategias de optimización [Internet]. España; 2020. Available from: https://seimc.org/contenidos/documentoscientificos/recomendaciones/seimc-rc-2020-COVID19-OrganizacionDiagnostico.pdf
Westgard JO. Prácticas Básicas de Control de Calidad [Internet]. 4ta ed. USA, Madison: QC Westgard, Inc.; 2013. 326 p. Available from: https://www.ifcc.org/media/333582/2015_Prácticas_Básicas_de_Control_de_Calidad.pdf
Shahsiah R, Nili F, Ardalan FA, Pourgholi F, Borumand MA. Application of quality control planning methods for the improvement of a quantitative molecular assay. J Virol Methods. 2013 Nov 1;193(2):683–6.
Serrano-Cumplido A, Ruiz A, Segura-Fragoso A. Aplicación del valor umbral del número de ciclos (Ct) de PCR en la COVID-19. Med Fam. 2020;47(January):337–41.
Public Health England. Understanding cycle threshold (Ct) in SARS-CoV-2 RT-PCR A guide for health protection teams. 2020;1–12. Available from: https://www.gov.uk/government/publications/cycle-threshold-ct-in-sars-cov-2-rt-pcr
Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest [Internet]. 2020;0(0):1–7. Available from: https://doi.org/10.1080/00365513.2020.1768587
Westgard SA, Westgard QC. Six Sigma Metric Analysis for Analytical Testing Processes [Internet]. USA; 2009. Available from: https://www.corelaboratory.abbott/sal/whitePaper/SixSigma_WP_MAATP_ADD-00058830.pdf
Gutiérrez, H.; De la Vara R. Control estadístico de calidad y seis sigma. 2da ed. México D.F: McGraw-Hill; 2009. 502 p.
Palacios López M, Gisbert Soler V. Control estadístico de la calidad: una aplicación práctica.. Editorial Científica 3Ciencias; 2018.
Siemens. FTD SARS CoV 2. Vol. 2. USA; 2014.
Parra-Ortega I, Carbajal-Franco E, Vilchis-Ordoñez A, Ángeles-Floriano T, Nieto-Rivera B, López-Martínez I, et al. Distribución de los valores del Ct en la RT-PCR para SARS-CoV-2 al momento del diagnóstico en pacientes pediátricos mexicanos. Rev Mex Patol Clínica y Med Lab. 2020;67(4):176–82.
Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect. 2020;26(9):1248–53.
Khodare A, Padhi A, Gupta E, Agarwal R, Dubey S, Sarin S. Optimal size of sample pooling for RNA pool testing: An avant-garde for scaling up severe acute respiratory syndrome coronavirus-2 testing. Indian J Med Microbiol [Internet]. 2020;38(1):18–23. Available from: https://doi.org/10.4103/ijmm.IJMM_20_260
Borillo GA, Kagan RM, Baumann RE, Fainstein BM, Umaru L, Li HR, et al. Pooling of Upper Respiratory Specimens Using a SARS-CoV-2 Real-time RT-PCR Assay Authorized for Emergency Use in Low-Prevalence Populations for High-Throughput Testing. Open Forum Infect Dis. 2020;7(11):1–7.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Giancarlo Torres-Gamarra
This work is licensed under a Creative Commons Attribution 4.0 International License.