

Rev. Cuerpo Med. HNAAA, Vol 14 (2) - 2021

REVISTA DEL CUERPO MÉDICO HOSPITAL NACIONAL ALMANZOR AGUINAGA ASENJO, CHICLAYO, PERÚ

ISSN | impresa: 2225-5109; Electrónica: 2227-4731

Cross Ref. DOI: 10.35434/rcmhnaaa | OJS https://cmhnaaa.org.pe/ojs

Original Article

SWCNTs Interaction with Dopamine and Serotonin Anticancer Through QM/MM Methods: A Drug Delivery Approaches

Interacción de SWCNTs con anticancerígenos de dopamina y serotonina a través de métodos de QM/MM: Un enfogue de administración de medicamentos

DOI

Nastaran Saghayi Marouf^{1,a}, Majid Monajjemi^{2,b}, Karim Zare^{1,b}, Ali Shamel^{3,c}

https://doi.org/10.35434/rcmhnaaa.2021.142.1053

ABSTRACT

Objetive: Dopamine and Serotonin are the two important biological transmitters that have hormonal activities and responsible for happiness and felling well. The aim of this article was to study theoretically the structure features of Dopamine and Serotonin in the complex of single-walled carbon nanotube as a neurotransmitter. Material and Methods: The structure of Dopamine and Serotonin binding with SWCNT with four different diameters (7.0,7.5,7.7,10.0 nm) was studied by using molecular mechanic (MM) and quantum mechanic (QM). The remarkable energies including potential energy, total energy and kinetic energy in time of simulation 10 ns steps in two temperatures (298, 310 kelvin degree) were investigated by Monte Carlo method with opls force filed. NMR shielding tensor data by B3LYP level of theory with 6-31 G(d) as a basis set and semi empirical method have been also fulfilled.

Results: Theoretical computations were performed to study NMR chemical shift data including magnetic shielding tensor (σ , ppm), shielding asymmetry (η), magnetic shielding anisotropy (σ aniso), magnetic shielding isotropy (σ iso), skew of a tensor (K) and chemical shift anisotropy ($\Delta\sigma$) and span (Ω) at various rotation angles around a specific rotation, physical and chemical properties of atomic nuclei. Semi empirical calculations such as total energy, binding energy, isolated atomic energy, electronic energy, core-core interaction and heat of formation in AM1 were revealed. Conclusion: It is figured out in Monte Carlo method our two specific drug and its nanotube with small diameter are the most stable one than the others. The larger diameter leads the combination stability into lower value.

Keywords: Nanotubes, carbon; Monte Carlo method; Semi-empirical; neurotransmitter; pharmaceutical preparations (Source: DeCS-BIREME).

RESUMEN

Objetivo: La dopamina y la serotonina son los dos importantes transmisores biológicos que tienen actividades hormonales y son responsables de la felicidad y el bienestar. El objetivo de este artículo fue estudiar teóricamente las características estructurales de la dopamina y la serotonina en el complejo de nanotubos de carbono de pared simple como neurotransmisor. Material y métodos: Se estudió la estructura de la unión de dopamina y serotonina con SWCNT con cuatro diámetros diferentes (7.0, 7.5, 7.7, 10.0 nm) utilizando mecánica molecular (MM) y mecánica cuántica (QM). Las energías notables, incluida la energía potencial, la energía total y la energía cinética en el tiempo de simulación en pasos de 10 ns en dos temperaturas (298, 310 grados kelvin), fueron investigadas por el método de Monte Carlo con fuerza opls archivada. También se han cumplido los datos del tensor de blindaje de RMN según el nivel de teoría B3LYP con 6-31 G (d) como conjunto de base y método semi empírico. Resultados: Se realizaron cálculos teóricos para estudiar los datos de desplazamiento químico de RMN, incluido el tensor de blindaje magnético (σ, ppm), la asimetría de blindaje (η), la anisotropía de blindaje magnético (σaniso), la isotropía de blindaje magnético (σiso), la desviación de un tensor (Κ) y anisotropía de desplazamiento químico ($\Delta\sigma$) y span (Ω) en varios ángulos de rotación alrededor de una rotación específica, propiedades físicas y químicas de los núcleos atómicos. Se revelaron cálculos semi empíricos como energía total, energía de enlace, energía atómica aislada, energía electrónica, interacción núcleo-núcleo y calor de formación en Am1. Conclusión: En el método Monte Carlo se deduce que nuestros dos fármacos específicos y su nanotubo de pequeño diámetro son los más estables que los demás. El diámetro más grande lleva la estabilidad de la combinación a un valor más bajo.

Palabras Clave: Nanotubos de carbono; método Monte Carlo; Semiempírico; neurotransmisor; preparaciones farmacéuticas. (Fuente: DeCS-BIREME).

FILIATION

- 1. Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
- University, lehran, Iran. Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
- Department of Chemistry, Ardabil Branch, Islamic Azad University, 3. Ardabil, Iran.
- Ph.D. a. Ph.D. full Professor.
- b. c. Ph.D, Associate Professor.

ORCID

- 1. Nastaran Saghayi Marouf : 0000-0003-4658-8682 Majid Monajjemi 2.
- 0000-0002-6665-837X 3
- Karim Zare: 0000-0003-0441-7834
- 4. Ali Shamel 0000-0003-2904-1044

CORRESPONDENCE

Karim Zare Address: Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

EMAIL k-zare@srbiau.ac.ir

CONFLICTS OF INTEREST authors declared no conflict of interest.

FINANCING Self-financi

PEER REVIEW Received: 15/12/2021 Accepted: 30/04/2021

HOW TO CITE

Saghayi Marouf, N., Monajjemi, M., Zare, K., & Shamel, A. Interacción de SWCNTs con anticancerigenos de dopamina y serotonina a través de métodos de QM/MM: Un enfoque de administración de medicamentos. Revista Del Cuerpo Médico Hospital Nacional Almanzor de dopamentos de dopamento de la constructor Médico Hospital Nacional Almanzor de dopamentos de dopamento de la constructor Médico Hospital Nacional Almanzor de dopamento de dopamento de la constructor de dopamento de la constructor de dopamento de la constructor de dopamento de dopamento de la constructor de dopamento Aguinaga Asenjo, 2021, 14(2), 173 - 179. https://doi.org/10.35434/rcmhnaaa.202 1.142.1053

This work is under a Licencia Creative Commons Atribución 4.0 Internacional. Printer Version: ISSN: 2225-5109 Electronic Version: ISSN: 2227-4731 Cross Ref. DOI: 10.35434/rcmhnaaa OJS: https://cmhnaaa.org.pe/ojs

INTRODUCTION

Dopamine (DA, a contraction of 3, 4dihydroxyphenethylamine) with C8H11NO2 molecular formula and 153.18 (g/mol) molecular weight, is an organic chemical of Catecholamine and Phenethylamine families. The structure of Dopamine is consist of a Catechol structure with substitution of hydrogen via 2-aminoethyl group⁽¹⁾.

Dopamine acts both as human hormone and a neurotransmitter and apply its effects by binding and activating cell surface receptors⁽²⁾, meaning that the Dopamine effects accompany by second messenger system⁽³⁾.

Some evidence represent that midbrain dopamine neurons are heterogeneous in their prediction targets, responses to environmental stimuli, pharmacology, and effects on motivated behavior.⁽⁴⁾ Based on public beliefs about the Dopamine central role in causing "wanting" and "pleasure", detailed studies demonstrated that Dopamine could not simply equated with liking and pleasure⁽⁵⁾ but pleasure centers have been identified both with Dopamine system and outside Dopamine system⁽⁶⁾.

Dopamine also used as manufactured medication that formly named Intropin, Dopastat, and Revimine⁽⁷⁾. As drug it is mostly used in hilling of severe low blood pressure in infants⁽⁸⁾, slow heart rate by both increasing sodium excretion by the kidney, increasing in urine output and increasing force on in low doses^(9,10), and also it has main role in several significant medical conditions such as Parkinson's disease, an age-related movement disorder, in which the main symptoms accompany by the loss of dopamine-secreting cells in the substantia nigra⁽¹¹⁾, schizophrenia⁽¹²⁾ and addiction⁽¹³⁻¹⁵⁾.

Since the participation of serotonin and norepinephrine in pain spinal reduction is well known, Dopamine has a critical role in pain processing in different levels of central nervous system, including spinal cord, periaqueductal gray, thalamus, basal ganglia, and cingulate cortex⁽¹⁶⁾. Other advantages of dopamine are in regulation of plasma glucose levels, endocrine function, and neuroimmune regulation⁽¹⁷⁾.

Serotonin (5-hydroxytryptamine (5-HT)) with C10H12N2O molecular formula and 176.215 g/mol molecular mass, the monoamine neurotransmitter, has effective role in contributor to feelings of well-being and happiness although its actual biological function is complicated⁽¹⁸⁾.

Biochemically, serotonin synthesized from amino acid tryptophan throughh the addition of a hydroxyl group and removal of the carboxyl group^(19,20). In human body the most of total serotonin is located in enterochromaffin cells in the GI tract (gastrointestinal tract) and works as intestinal movements regulation^(21,22) and it is also secreted luminally and basolaterally and leads to increased serotonin uptake by circulating platelets and activation after stimulation and eventually an increase in myenteric neurons and gastrointestinal motility Irritability⁽²³⁾.

Furthermore, serotonin also stored in blood platelets and released during vasoconstriction, which acts as an agonist to other platelets⁽²⁴⁾. Serotonin has numerous effects including, effects on mood, anxiety, sleep, appetite, temperature,

eating behavior, sexual behavior, movements and gastrointestinal motility⁽²⁵⁾.

Drugs that selectively target specific serotonin receptor subtypes therapeutically used for anti-depression effects and called selective serotonin re-uptake inhibitors, their functions are dependent on serotonin availability in the synapse⁽²⁶⁾.

There are many electrochemical techniques for the detection of biomolecules however the expansion of sentiment platform with high sensitivity and selectivity is kinda challengeable. Nanomaterials-based sensor platforms are fascinating for researchers for their capability to carry out the electrochemical analysis of neurotransmitters and they have been extensively reported on for their sensitive detection of some biochemical molecules such as epinephrine, dopamine, serotonin, glutamate, acetylcholine, nitric oxide, and purines⁽²⁷⁾.

Since dopamine and serotonin are important neurotransmitters that have dealings in the brain, dopamine could easily detected with electrochemical sensors but the detection of serotonin has more difficulty because the observation of serotonin oxide can reduce sensitivity and by using carbon nanotubes (CNTs) treatments, the sensitivity of system will be increase and promote electron transfer, and reduce sedimentation⁽²⁸⁾.

In addition, carbon-based nanomaterials such as singlewalled carbon nanotubes (SWCNTs), multi-walled carbon nanotube (MWCNTs) and graphene due to their biocompatibility for instant, non-toxic properties, and low costs can be used in such biosensing and electrochemical sensing applications^(29,30).

Among the carbon-based nanomaterials, CNTs widely explored in electrochemical sensors studies due to their fantastic structure, high surface area, rapid electron kinetic, high thermal conductivity, stability and electronic properties⁽³¹⁻³³⁾.

MATERIALS AND METHODS

The molecular structure, quantum mechanics and Theoretical computations, charges distribution for Serotonin and Dopamine binding to SWCNTs with four different diameters such as 7.0, 7.5, 7.7, 10.0 (nm) calculated using standard GIAO and B3LYP level of theory with 6-31 G(d) basis set with the gaussian 09 program to performed to study chemical and physical properties of nuclei and NMR chemical shift data⁽³⁴⁾. Gaussian 09 is a computational chemistry software package appropriate to demonstration interaction of electrons in atoms and molecules. Molecular orbital energies, bond energies, molecular geometries and energies, and vibrational frequencies are the other features can be found in this program. The chemical shift refers to aspect dependent on the secondary magnetic field created by the induced motions of the electrons surrounding nucleus⁽³⁵⁾. The NMR analysis have been fulfilled with four parameters including, magnetic isotropic (oiso) and magnetic anisotropic (σ aniso) shielding, σ 11, σ 22, σ 33 as shown in the following result for its fundamental importance in chemistry and biochemistry studies , in which the σ defined as magnetic

SWCNTs Interaction with Dopamine and Serotonin Anticancer Through QM/MM Methods: A Drug Delivery Approaches

shielding tensor(ppm) and (η) defined as shielding asymmetry $.\sigma$ also refers to the differential resonance shift due to the induced motion of the electrons⁽³⁶⁾. Kinetic and thermodynamic investigations, geometry optimization, Monte Carlo and vibrational analysis done by using HyperChem 8.0.8 software which is a sophisticated molecular modeling environment that is familiar for its quality, Flexibility, and ease of use. 3D embodiment with guantum calculations, molecular mechanics, and dynamics are other capability of this tool⁽³¹⁾. For Monte Carlo in molecular mechanic method we optimized Potential, kinetic and total energy with 10 steps in 310 k degree (the most stable and important temperature) and 298 k degree (environment temperature) and for Semi empirical the Am1 method with all parameters (Total Energy, Binding Energy, Isolated Atomic Energy, Electronic Energy, Core-Core

Interaction and Heat of Formation) is the best vibration analysis of molecules using a quantum mechanical approach that was obtained Semi empirical⁽³⁶⁾.

RESULTS

In this work we have studied theoretically the magnetic and kinetic properties of atoms and vibrational analysis to specified chemical and physical properties of atomic nuclei .According to NMR quantum mechanics-based ,our results were summarized to calculation of magnetic shielding tensor (σ , ppm),shielding asymmetry(η),magnetic shielding anisotropy (σ aniso,ppm),isotropic shielding value (σ iso), the skew of a tensor (K), chemical shift anisotropy ($\Delta\sigma$) and chemical shift (δ). these results are shown in figures 1-3 and are listed below in Tables 1-5.

Tabla 1. Calculated optimized energy parameter (kcal/mol) of Dopamine binding to nanotubes in temperature of 298 K and 310 K by Monte Carlo method(opls).

	Dopamine+SWCNT(7,0)		Dopar	Dopamine+SWCNT(7,5)			Dopamine+SWCNT(7,7)			Dopamine+SWCNT(10,0)			Dopamine+SWCNT(7,0)			Dopamine+SWCNT(7,5)			Dopamine+SWCNT(7,7)			Dopamine+SWCNT(10,0)		
						T=298	К							Т=310 К										
Time (ns)	EKIN	EPOT	ETOT	EKIN	EPOT	ЕТОТ	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT	EKIN	EPOT	ЕТОТ	EKIN	EPOT	ЕТОТ	EKIN	EPOT	ETOT
0	130.58	153.27	283.84	177.66	84336.9	84514.55	167	940.26	1107.26	124.36	897.59	1021.95	135.83	153.2652	289.0997	184.8088	84336.9	84521.71	173.7203	940.2647	1113.985	129.3662	897.5936	1026.96
1	130.58	216.13	346.7	177.66	4499.77	4677.42	167	995.46	1162.46	124.36	952.64	1076.99	135.83	219.6386	355.4731	184.8088	9608.054	9792.863	173.7203	999.4692	1173.189	129.3662	944.6094	1073.976
2	130.58	227.39	357.97	177.66	1150.36	1328.01	167	1026.11	1193.1	124.36	966.97	1091.33	135.83	232.2119	368.0464	184.8088	981.2433	1166.052	173.7203	1040.546	1214.267	129.3662	940.2651	1069.631
3	130.58	240.03	370.61	177.66	699.67	877.32	167	1041.27	1208.26	124.36	972.26	1096.62	135.83	231.817	367.6515	184.8088	729.0906	913.8994	173.7203	1036.184	1209.905	129.3662	951.4881	1080.854
4	130.58	236.24	366.82	177.66	657.36	835.02	167	1037.9	1204.89	124.36	954.02	1078.38	135.83	231.9751	367.8096	184.8088	648.9514	833.7603	173.7203	1048.105	1221.825	129.3662	993.8235	1123.19
5	130.58	243.51	374.09	177.66	623.67	801.32	167	1031.25	1198.25	124.36	963.74	1088.1	135.83	261.6438	397.4783	184.8088	631.7178	816.5266	173.7203	1064.05	1237.77	129.3662	967.9869	1097.353
6	130.58	229.93	360.5	177.66	603.16	780.81	167	1034.47	1201.46	124.36	959.12	1083.48	135.83	265.3977	401.2322	184.8088	617.2807	802.0896	173.7203	1054.451	1228.171	129.3662	986.1914	1115.558
7	130.58	251.59	382.17	177.66	603.64	781.3	167	1045.82	1212.82	124.36	963.45	1087.81	135.83	269.6734	405.5079	184.8088	592.3668	777.1756	173.7203	1057.797	1231.517	129.3662	966.8298	1096.196
8	130.58	245.69	376.26	177.66	587.64	765.3	167	1061.31	1228.3	124.36	962.43	1086.79	135.83	249.6479	385.4824	184.8088	591.7609	776.5697	173.7203	1048.992	1222.712	129.3662	971.9407	1101.307
9	130.58	222.36	352.94	177.66	603.29	781	167	1051.7	1218.69	124.36	979.98	1104.34	135.83	247.4558	383.2903	184.8088	596.0001	780.809	173.7203	1050.164	1223.884	129.3662	963.5457	1092.912
10	130.58	263.57	394.15	177.66	582.37	760.02	167	1052.89	1219.89	124.36	970.5	1094.86	135.83	246.6	382.4345	184.8088	587.64	772.4488	173.7203	1057.979	1231.699	129.3662	979.5601	1108.926

Tabla 2. . Calculated optimized energy parameter (kcal/mol) of Serotonin binding to nanotubes in temperature of 298 K and 310 K by Monte Carlo method (opls).

	Serotonine+SWCNT(7,0)				Serotonine+SWCNT(7,5)			Serotonine+SWCNT(7,7)			Serotonine+SWCNT(10,0)			Serotonine+SWCNT(7,0)			Serotonine+SWCNT(7,5)			Serotonine+SWCNT(7,7)			Serotonine+SWCNT(10,0)		
							T=298 ł	ĸ						Т=310 К											
Tin (ns	e EK	in epo	OT	ЕТОТ	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT	EKIN	EPOT	ЕТОТ	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT	EKIN	EPOT	ETOT
	0 133	.24 173	1.51	306.75	180.32	84078.9	84259.21	170	957.928	1127.589	127.02	908.23	1035.26	138.61	173.5084	312.115	187.581	84078.89	84266.47	176.4924	957.9282	1134.421	132.1383	908.2337	1040.372
	1 133	.24 240).42	373.66	180.32	10944.2	11124.49	170	1029.3	1198.958	127.02	954.94	1081.96	138.61	239.1553	377.7619	187.581	3993.651	4181.232	176.4924	1017.621	1194.113	132.1383	953.4902	1085.629
	2 133	.24 263	8.61	396.85	180.32	2824.92	3005.237	170	1050.21	1219.872	127.02	968.21	1095.23	138.61	258.0794	396.686	187.581	1822.931	2010.512	176.4924	1042.267	1218.76	132.1383	981.4182	1113.556
	3 133	.24 248	8.49	381.73	180.32	1426.26	1606.577	170	1057.24	1226.896	127.02	984.4	1111.42	138.61	268.7649	407.3715	187.581	1500.704	1688.285	176.4924	1069.748	1246.241	132.1383	978.8488	1110.987
	4 133	.24 259	9.88	393.12	180.32	1356.98	1537.297	170	1067.85	1237.511	127.02	976.24	1103.26	138.61	252.3617	390.9684	187.581	1363.96	1551.541	176.4924	1083.094	1259.586	132.1383	992.2209	1124.359
	5 133	.24 274	1.24	407.48	180.32	1304.01	1484.328	170	1076.06	1245.718	127.02	988.37	1115.39	138.61	270.7954	409.402	187.581	1331.275	1518.856	176.4924	1091.389	1267.881	132.1383	975.4073	1107.546
	6 133	.24 261	.65	394.89	180.32	1279.17	1459.488	170	1082.92	1252.578	127.02	977.99	1105.02	138.61	283.1207	421.7273	187.581	1283.902	1471.483	176.4924	1076.729	1253.221	132.1383	987.7799	1119.918
	7 133	.24 270).13	403.37	180.32	1286.81	1467.126	170	1065.35	1235.011	127.02	968.89	1095.91	138.61	289.4293	428.0359	187.581	1269.909	1457.49	176.4924	1059.324	1235.817	132.1383	979.4787	1111.617
	8 133	.24 273	s.69	406.94	180.32	1267.63	1447.948	170	1071.09	1240.748	127.02	971.9	1098.92	138.61	287.2545	425.8611	187.581	1269.492	1457.073	176.4924	1078.179	1254.671	132.1383	992.8001	1124.938
	9 133	.24 281	.66	414.9	180.32	1259.12	1439.443	170	1062.78	1232.442	127.02	974.05	1101.08	138.61	282.0094	420.6161	187.581	1262.755	1450.336	176.4924	1059.586	1236.079	132.1383	994.8066	1126.945
	0 133	.24 287	.68	420.92	180.32	1244.08	1424.399	170	1061.28	1230.942	127.02	974.98	1102	138.61	281.0491	419.6557	187.581	1255.818	1443.399	176.4924	1072.462	1248.954	132.1383	987.7957	1119.934

Nastaran Saghayi Marouf, Majid Monajjemi, Karim Zare, Ali Shame

Tabla 3. Optimized parameters of total energy, binding energy, isolated atomic energy, electronic energy, core-core interaction and heat of formation(cal/mol) for Dopamine + SWCNTs and Serotonin + SWCNTs by AM1 calculations.

		Dopamine+SWCNTs		
	Dopamine+SWCNT(7,0)	Dopamine+SWCNT(7,5)	Dopamine+SWCNT(7,7)	Dopamine+SWCNT(10,0)
Total Energy	1729277.492	-502827.559	-465946.272	-346066.001
Binding Energy	2071504.854	-28074.903	-24627.269	-18294.935
Isolated Atomic Energy	-342227.361	-474752.656	-441319.002	-327771.066
Electronic Energy	-4672132.504	-11583176.57	-10574707.36	-6645625.692
Core-Core Interaction	6401409.997	11080349.01	10108761.08	6299559.691
Heat of Formation	2092662.704	1427.388	2824.342	1904.261
		Serotonin+SWCNTs		
	Serotonin+SWCNT(7,0)	Serotonin+SWCNT(7,5)	Serotonin+SWCNT(7,7)	Serotonin+SWCNT(10,0)
Total Energy	1789419.791	-505817.551	-470238.065	-349604.997
Binding Energy	2134860.379	-27851.666	-25705.834	-18620.703
Isolated Atomic Energy	-345440.589	-477965.883	-444532.231	-330984.293
Electronic Energy	-4845762.266	-11956024.28	-10912827.85	-6924880.974
Core-Core Interaction	6635182.057	11450206.73	10442589.79	6575275.976
Heat of Formation	2156465.552	2097.948	2193.101	2025.815

Tabla 4. Comparison of NMR chemical shielding tensors data calculated by B3LYP models with 6-31G(d) basis set for N, O atoms in Dopamine with 7.0,7.5,7.7,10.0 (nm)diameters SWCNT.

Nanotube diameter Atomic label		∫(z σzz-σiso	z) σ33-σiso	Δσ		(Ω)	к if (σ ref = 0)	Ω (σ ref = 0)	к if (σ ref = 0.5)	Ω (σ ref = 0.5)	к if (σ ref = 0.9)	Ω (σ ref = 0.9)
	0106	-11.9286	9.9715	-17.8929	0.095216538	25.4982	-0.653599078	25.4982	-1.307198155	12.7491	-6.535990776	2.54982
7.0(nm) diameter	0107	-14.45	8.8222	-21.67505	0.000920413	24.1971	-0.812427936	24.1971	-1.624855871	12.09855	-8.124279356	2.41971
	N108	-2.8893	29.3864	-4.334	-0.079187817	77.5695	-0.72696614	77.5695	-1.45393228	38.78475	-7.2696614	7.75695
	0153	-12.6844	9.2826	-19.02665	-0.164287986	26.0817	-0.864571711	26.0817	-1.729143422	13.04085	-8.645717112	2.60817
7.5 (nm) diameter	0154	-10.4479	46.1046	-15.6719	3.390584422	84.323	0.280564022	84.323	0.561128043	42.1615	2.805640217	8.4323
	N155	-46.7135	64.7491	-70.0702	0.954384317	151.8101	-0.440915328	151.8101	-0.881830656	75.90505	-4.409153278	15.18101
	0141	3.4664	11.0022	5.1995	-5.055139917	26.0611	-0.46699487	26.0611	-0.933989739	13.03055	-4.669948697	2.60611
7.7 (nm) diameter	0142	1.7464	10.4976	2.6196	-11.82409528	26.4874	-0.622042934	26.4874	-1.244085867	13.2437	-6.220429336	2.64874
	N143	-3.857	33.2431	-5.78545	2.746588424	63.1468	0.15865412	63.1468	0.31730824	31.5734	1.586541202	6.31468
	0101	-2.1396	24.5277	-3.20935	-15.43821958	48.0975	0.059747388	48.0975	0.119494776	24.04875	0.597473881	4.80975
10.0 (nm) diameter	0102	-3.7703	23.2706	-5.6554	-7.167556671	42.5442	0.281855106	42.5442	0.563710212	21.2721	2.81855106	4.25442
	N103	-75.5478	5699.9898	-113.3217	-16.3405579	12723.027	-0.311965242	12723.027	-0.623930484	6361.5135	-3.119652422	1272.3027

Tabla 5. Comparison of NMR chemical shielding tensors data calculated by B3LYP models with 6-31G(d) basis set for N, O atoms in Serotonin with 7.0,7.5,7.7,10.0 (nm) diameters SWCNT.

Anotube diameter Atomic label		∫(z σzz-σiso	z) σ33-σiso	Δσ		(Ω)	к if (σ ref = 0)	Ω (σ ref = 0)	к if (σ ref = 0.5)	Ω (σ ref = 0.5)	к if (σ ref = 0.9)	Ω (σ ref = 0.9)
	O106	-2.3999	7.2267	-3.5999	1.342703964	14.8399	-0.07813395	14.8399	-0.156267899	7.41995	-0.781339497	1.48399
7.0 (nm) diameter	N107	2.5407	23.2385	3.8111	-10.07937341	47.4184	-0.059552832	47.4184	-0.119105664	23.7092	-0.595528318	4.74184
	N108	33.7003	35.6799	50.55055	0.192760514	59.9871	0.568762284	59.9871	1.137524568	29.99355	5.687622839	5.99871
	0153	22.9248	24.4182	34.38715	-0.758145121	56.6741	-0.414887929	56.6741	-0.829775859	28.33705	-4.148879294	5.66741
7.5 (nm) diameter	N154	-22.3692	34.4945	-33.55375	0.883577842	59.5133	0.477659616	59.5133	0.955319231	29.75665	4.776596156	5.95133
	N155	15.8405	75.5435	23.76075	-0.79616805	185.3307	-0.554312372	185.3307	-1.108624745	92.66535	-5.543123724	18.53307
	0141	10.1373	80.947	15.206	-3.784446929	126.3814	0.842988763	126.3814	1.685977525	63.1907	8.429887626	12.63814
7.7 (nm) diameter	N142	-6.9518	25.592	-10.4278	0.025345711	51.2844	-0.005878981	51.2844	-0.011757961	25.6422	-0.058789807	5.12844
	N143	20.0085	26.5898	30.0127	-1.546565287	60.4593	-0.361224824	60.4593	-0.722449648	30.22965	-3.61224824	6.04593
	0101	-21.8789	28.7006	-32.81825	-1.052684101	50.6321	0.401081527	50.6321	0.802163055	25.31605	4.010815273	5.06321
10.0 (nm) diameter	N102	15.7151	22.7798	23.5727	2.514633453	54.7706	-0.504517022	54.7706	-1.009034044	27.3853	-5.045170219	5.47706
	N103	-208.6629	656.859	-312.9944	0.904479761	1434.6844	-0.252947268	1434.6844	-0.505894537	717.3422	-2.529472684	143.46844

SWCNTs Interaction with Dopamine and Serotonin Anticancer Through QM/MM Methods: A Drug Delivery Approaches

Figura 1.

NMR parameters of isotropic and anisotropic shielding for SWCNT+Dopamine and SWCNT+ Serotonin in gas phases at the B3LYP/6-31G (blue line is related to oiso and red line is related to oaniso)

Figura 2. Optimized parameters of total energy, binding energy, isolated atomic energy, electronic core-core interaction and heat of formation(cal/mol) for Dopamine + SWCNTs by AM1 calculations.energy

Figura 3.

Optimized parameters of total energy, binding energy, isolated atomic energy, electronic energy, core-core interaction and heat of formation(cal/mol) for Serotonin + SWCNTs by AM1 calculations.

DISCUSSION

Based on table1-2 in Dopamine-SWCNT combination at 298°K the optimized potential energy is in 10th step 263.5 (kcal/mol) and at body temperature (310K) is 246.6 kcal/mol in Dopamine+SWCNT (7.0) and in Serotonin-SWCNT combination is respectively 287.6 kcal/mol and 281.04 kcal/mol. As it shown in the table 1 and 2, the stability of potential energy in 10th step in the drug-SWCNT combination except SWCNT(7.0) become minimized by increasing compound diameter at 310°k . The optimum Kinetic energy for Dopamine compound in both 298 and 310 °k belongs to Dopamine+SWCNT10.0 complex and respectively are equal to 124.3, 129.3 kcal/mol. Serotonin +SWCNT10.0 nm also has the same behavior and the kinetic energy parameter at 298 °k is 127.0 kcal/mol and at 310K is 132.1 kcal/mol. What is revealed from table5, the minimum total energy belongs to Dopamine +SWCNT 7.5 complex (-502827.559 cal/mol) . Binding energy is another parameter checked in semi empirical methods that is much more in Dopamine+SWCNT 7.0 as a result of more stable structure (2071504.8 cal/mol) and the third parameter investigated is Core-Core interaction which in Dopamine+SWCNT 7.5 is the strongest one (11080349.01 cal/mol. Connection of Dopamine with SWCNT 7.5 release minimum amount of heat of formation (1427.3 cal/mol) and connection with SWCNT 7.0 frees up 2092662.7 cal/mol.

Semi empirical results of Dopamine gathered in Fig 2 observed R2=0.93 for total and binding energy and heat of formation, R2=0.96 for electronic energy, R2=0.97 for isolating energy and Core-Core interaction.For Serotonin

based on table 3, Serotonin+SWCNT 7.5 has minimum total and binding energy (-505817.551 cal/mol) (-27851.666 cal/mol) and also has the maximum value of Core-Core interaction (11450206.733 cal/mol). Serotonin+SWCNT 7.0 Complex has the maximum value of heat of formation (2156465.552 cal/mol). As it comes out from Fig3, results obtained R2=0.93 for total and binding energy and also for heat of formation, R2=0.97 for isolating atomic energy and Core-Core interaction and for electronic energy R2 =0.95.

The second level of the results specified to NMR chemical shielding tensors data for the complex of Dopamine and Serotonin+SWCNT have been recorded in table 4-5. According to table 4, $\Delta \sigma$ for all Nitrogen atoms in the dopamine-SWCNT complex has the negative value and the minimum value belongs to N103 in Dopamine+ SWCNT10.0 (-113.32) and among oxygen atoms,0141 has the maximum amount in the Dopamine + SWCNT 7.7 complex (5.19) .N103 in Dopamine complex also has the minimum value of Etta (η) (-16.34) although it has maximum amount of Ω (12723.027). The maximum level of η (3.39) belongs to O154 in this complex by 7.5 nm diameter. As it comes from table10, the maximum value of $\Delta \sigma$ belongs to N108 in the Serotonin-SWCNT complex with 7.0 nm diameter nanotube (50.55), maximum amount of η belongs to N102 (in 10.0 nm diameter nanotube) about 2.51. The nitrogen with atomic label 103 in this combination has both the lowest value of chemical shift anisotropy ($\Delta \sigma$) about -312.9 and the most and positive value of Ω (1434.6).

In this work we study theoretically the structure features of Dopamine and Serotonin in the complex of single-walled carbon nanotube as a neurotransmitter. molecular mechanic and quantum mechanics data such as potential ,total and kinetic energy , geometrical optimization and vibrational analysis have been investigated by using Mont Carlo and Semi empirical methods .Chemical shift anisotropy asymmetry (η), isotropy (σ iso), anisotropy (σ aniso), $\Delta\sigma$, skew of a tensor (K) and chemical shift tensor (δ) were calculated based on theoretical data obtained from NMR and BL3Y/6-31G(d) levels of theory. It is figured out in Mont Carlo method our two specific drug and its nanotube with small diameter are the most stable one than the others. The larger diameter leads the combination stability into lower value.

REFERENCIAS BIBLIOGRÁFICAS

- Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxid Med Cell Longev. 2016;2016:9730467. doi: 10.1155/2016/9730467.
- Seeman P. Chapter 1: Historical overview: Introduction to the dopamine receptors. In Neve K (ed.). The Dopamine Receptors. Springer; 2009.1-22. ISBN 978-1-60327-333-6.
- Romanelli RJ, Williams JT, Neve KA. Chapter 6: Dopamine receptor signalling: intracellular pathways to behavior. In Neve KA (ed.). The Dopamine Receptors. Springer; 2009;137-74. ISBN 978-1-60327-333-6.
- Wenzel JM, Rauscher NA, Cheer JF, Oleson EB. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci. 2015;6(1):16-26. doi: 10.1021/cn500255p.
- Baliki MN, Mansour A, Baria AT, Huang L, Berger SE, Fields HL, Apkarian AV. Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J Neurosci. 2013;33(41): 16383-93. doi: 10.1523/JNEUROSCI.1731-13.2013.
- 6. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research. Brain Res

Brain Res Rev. 1993;18(3):247-91. doi: 10.1016/0165-0173(93)90013-

- Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: 'liking', 'wanting', and learning". Curr Opin Pharmacol. 2009;9(1):65-73. doi: 10.1016/j.coph.2008.12.014.
- World Health Organization. WHO Model List of Essential Medicines[Internet]. World Health Organization; 2013 [cited 2020 november 8]. Available from: https://www.who.int/groups/expertcommittee-on-selection-and-use-of-essential-medicines/essentialmedicines-lists.
- Bhayat SI; Gowda HM; Eisenhut M. Should dopamine be the first line inotrope in the treatment of neonatal hypotension? Review of the evidence. World J Clin Pediatr. 2016;5(2):212-22. doi: 10.5409/wjcp.v5.i2.212.
- Bhatt-Mehta V, Nahata MC. Dopamine and dobutamine in pediatric therapy. Pharmacotherapy. 1989;9(5):303-14. doi: 10.1002/j.1875-9114.1989.tb04142.x.
- 11. Bronwen JB, Knights KM. Pharmacology for Health Professionals (2nd ed.). Elsevier Australia; 2009;192. ISBN 978-0-7295-3929-6.
- Dickson DV. Neuropathology of movement disorders. In Tolosa E, Jankovic JJ (eds.). Parkinson's disease and movement disorders. Hagerstown, MD: Lippincott Williams & Wilkins;2007;271-83. ISBN 978-0-7817-7881-7.
- Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull. 2009;35(3):549-62. doi: 10.1093/schbul/sbp006.
- 14. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem. 2011;116(2):164-76. doi: 10.1111/j.1471-4159.2010.07109.x.
- Freye E. Pharmacology and abuse of cocaine, amphetamines, ecstasy and related designer drugs [Internet]. Germany: Springer, Dordrecht; 2009 [cited 2020 november 8]. Available from: 10.1007/978-90-481-2448-0.
- Heal DJ, Pierce DM. Methylphenidate and its isomers: their role in the treatment of attention-deficit hyperactivity disorder using a transdermal delivery system. CNS Drugs. 2006;20(9):713-38. doi: 10.2165/00023210-200620090-00002.
- 17. Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother. 2008;8(5):781-97. doi: 10.1586/14737175.8.5.781.
- Durairaj S, Sidhureddy B, Cirone J, Chen A. Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. Applied sciences. 2018;8(9):1504-1532. doi: 10.3390/app8091504.
- Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci [Internet]. 2007 [cited 2020 november 8]; 32(6): 394-9. A vailable from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077351/.
- 20. González-Flores D, Velardo B, Garrido M, González-Gómez D, Lozano M, Ayuso MC, Barriga C, et al. Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: Nutritional and functional characterization of their content. J Food Nutr Res (Newark) [Internet]. 2011 [cited 2020 november 8];50(4):229-36. Available f r o m : https://www.vup.sk/en/index.php?mainID=2&navID=34&version=2

&volume=50&article=989. 21. Carlson NR. Physiology of Behavior. 11th ed. Vol. 1. N.p.: Pearson

- Education, n.d. Print.Categories; 2012. 22. King MW. Serotonin. The Medical Biochemistry Page. Indiana University School of Medicine; 2009.
- Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu R e v M e d . 2 0 0 9 ; 6 0 : 3 5 5 - 6 6 . d o i : 10.1146/annurev.med.60.042307.110802.
- 24. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-76. doi: 10.1016/j.cell.2015.02.047.
- Schlienger RG, Meier CR. Effect of selective serotonin reuptake inhibitors on platelet activation: can they prevent acute myocardial infarction? Am J Cardiovasc Drugs. 2003;3(3):149-62. doi: 10.2165/00129784-200303030-00001.
- Beattie DT, Smith, JAM. Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(3):181-203. doi: 10.1007/s00210-008-0276-9.

SWCNTs Interaction with Dopamine and Serotonin Anticancer Through QM/MM Methods: A Drug Delivery Approaches

- Sangkuhl K, Klein TE, Altman RB. Selective serotonin reuptake inhibitors pathway. Pharmacogenetics and Genomics. 2009;19(11):907-9. doi: 10.1097/FPC.0b013e32833132cb.
- Kumara Swamya BE, Venton BJ. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst. 2007;132(9):876-84. doi: 10.1039/B705552H.
- Adhikari BR; Govindhan M; Chen A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors (Basel). 2015;15(9):22490-508. doi: 10.3390/s150922490.
- Chen A, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42(12):5425-38. doi: 10.1039/c3cs35518g.
- Jamadi Khiabani M, Peymani M, Rasoolzadeh R, Khashe S. Study on interaction between carbon nanotubes (CNTs) as nano carrier for loading and delivery of Methotrexate. Int J Bio-Inorg Hybr Nanomater [Internet]. 2018 [cited 2020 november 8];7(2):145-62. Available

f r o m : https://ijbihn.iauvaramin.ac.ir/article_665464_8cabb553d09cfe58 bac8902750b36410.pdf.

- 32. lijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56-8. doi: 10.1038/354056a0.
- Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998;391:59-62. doi: 10.1038/34139.
- Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. <u>Chemical Reviews.</u> <u>1988;88(6):899-926. doi: 10.1021/cr00088a005.</u>
- 35. Grant DM, Harris RK. Encyclopedia of Nuclear Magnetic Resonance [Internet]. London: John Wiley & Sons; 2002.
- Mollaamin F, Monajjemi M, Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations. J Comput Theor Nanosci. 2015;12(6):1030-9. doi: 10.1166/jctn.2015.3846.